Application of a ω-3 Desaturase with an Arachidonic Acid Preference to Eicosapentaenoic Acid Production in Mortierella alpina
نویسندگان
چکیده
منابع مشابه
Application of a ω-3 Desaturase with an Arachidonic Acid Preference to Eicosapentaenoic Acid Production in Mortierella alpina
In the industrial oleaginous fungus Mortierella alpina, the arachidonic acid (AA; C20:4; ω-6) fraction can reach 50% of the total fatty acids (TFAs) in vivo. However, the eicosapentaenoic acid (EPA; C20:5; ω-3) fraction is less than 3% when this fungus is cultivated at a low temperature (12°C). Omega-3 fatty acid desaturase is a key enzyme in ω-3 long-chain polyunsaturated fatty acids biosynthe...
متن کاملApplication of a delta-6 desaturase with α-linolenic acid preference on eicosapentaenoic acid production in Mortierella alpina
BACKGROUND Delta-6 desaturase (FADS6) is a key bifunctional enzyme desaturating linoleic acid (LA) or α-linolenic acid (ALA) in the biosynthesis of polyunsaturated fatty acids (PUFAs). In previous work, we analyzed the substrate specificity of two FADS6 enzymes from Mortierella alpina ATCC 32222 (MaFADS6) and Micromonas pusilla CCMP1545 (MpFADS6), which showed preference for LA and ALA, respect...
متن کاملArachidonic acid production by Mortierella alpina using raw crop materials.
BACKGROUND Arachidonic acid (ARA) is one of the three essential fatty acids, and it is important for human body to keep healthy and is widely used. At present, expensive materials such as glucose and yeast extract are generally reported to be optimal for ARA production. A new cost-effective fermentation process including cheaper material for ARA production is of great significance. METHODS Fe...
متن کاملStatistical Optimization of Arachidonic Acid Production by Mortierella alpina CBS 754.68 in Submerged Fermentation
Arachidonic acid is an essential fatty acid in human nutrition. In the present study, production of arachidonicacid by Mortierella alpina CBS 754.68 was evaluated in submerged fermentation. The fermentation variableswere selected in accordance with the Plackett-Burman (PB) design and further optimized via response surface methodology (RSM). Five significant variables, namely glucose...
متن کاملMetabolic engineering of Mortierella alpina for arachidonic acid production with glycerol as carbon source
BACKGROUND Although some microorganisms can convert glycerol into valuable products such as polyunsaturated fatty acids, the yields are relative low due primarily to an inefficient assimilation of glycerol. Mortierella alpina is an oleaginous fungus which preferentially uses glucose over glycerol as the carbon source for fatty acid synthesis. RESULTS In the present study, we metabolically eng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Bioengineering and Biotechnology
سال: 2018
ISSN: 2296-4185
DOI: 10.3389/fbioe.2017.00089